The companion and conjoint of a \(\mathcal{V}\) functor, \(\mathcal{P}\xrightarrow{F}\mathcal{Q}\)
Companion, denoted \(\mathcal{P}\overset{\hat F}\nrightarrow \mathcal{Q}\), is defined \(\hat{F}(p,q):=\mathcal{Q}(F(p),q)\)
Conjoint, denoted \(\mathcal{Q}\overset{\check{F}}\nrightarrow\mathcal{P}\)
A \(\mathcal{V}\) adjunction.
A pair of \(\mathcal{V}\) functors, \(\mathcal{P}\overset{F}{\underset{G}\rightleftarrows} \mathcal{Q}\) such that: \(\forall p\in \mathcal{P}, q \in \mathcal{Q}: \mathcal{P}(p,G(q)) \cong \mathcal{Q}(F(p),q)\)
The collage of a \(\mathcal{V}\) profunctor, \(\mathcal{X}\overset{\phi}\nrightarrow \mathcal{Y}\)
A \(\mathcal{V}\) category, denoted \(\mathbf{Col}(\phi)\)
\(Ob(\mathbf{Col}(\phi)):=\)\(Ob(\mathcal{X})\sqcup Ob(\mathcal{Y})\)
\(\mathbf{Col}(\phi)(a,b) :=\) \(\begin{cases}\mathcal{X}(a,b) & a,b \in \mathcal{X} \\ \phi(a,b)& a \in \mathcal{X}, b \in \mathcal{Y} \\ \varnothing & a \in \mathcal{Y}, b \in \mathcal{X} \\ \mathcal{Y}(a,b) & a,b \in \mathcal{Y} \end{cases}\)
There are obvious functors \(\mathcal{X}\xrightarrow{i_\mathcal{X}}\mathbf{Col}(\phi)\) and \(\mathcal{Y}\xrightarrow{i_\mathcal{Y}}\mathbf{Col}(\phi)\) sending each object to “itself" called collage inclusions
For any preorder \(\mathcal{P}\), there is an identity functor \(\mathcal{P}\xrightarrow{id}\mathcal{P}\)
Its companion and conjoint agree: \(\hat{id}=\check{id}=\mathcal{P}\overset{U_\mathcal{P}}\nrightarrow \mathcal{P}\) equivalent to the unit profunctor.
Consider the addition function on real numbers.
It is monotonic, since \((a,b,c)\leq(a',b',c')\) means \(a+b+c\leq a'+b'+c'\)
Therefore it has a companion and a conjoint
The companion \(\mathbb{R}\times\mathbb{R}\times\mathbb{R}\overset{\hat +}\nrightarrow \mathbb{R}\) sends (a,b,c,d) to true iff \(a+b+c\leq d\).
TODO
Check that the companion \(\hat{id}\) of the identity functor is actually the unit profunctor.
TODO
Considering the addition example, what is the conjoint of this addition function?
TODO
Draw a Hasse diagram for the collage of the profunctor:
TODO